Dynamical Analysis of Schizophrenia Courses

Wolfgang Tschacher, Christian Scheier, and Yuji Hashimoto

In order to assess the working hypothesis that schizophrenia may be viewed as a nonlinear
dynamical disease, we examined the long-term psychoticity dynamics of 14 patients. The data
consist of daily ratings of psychopathology observed for 200 or more consecutive days in each
patient. We implemented nonlinear dynamical analysis methods with a potential of being
applicable even to relatively short and noisy time series: two different forecasting approaches
combined with surrogate methods that allow statistical testing in each single case. The
resulting classification of dynamics gives evidence that eight patients show nonlinear
evolutions of symptom courses. Four cases can be modeled linearly, two as random processes.
Thus, a larger proportion of the schizophrenic psychoses we studied shows nonlinear time
courses. In this way the validity of the concept of dynamical diseases could be supported on
statistical grounds in this important area of psychopathology. The nonlinear view—a
low-dimensional nonlinear system generating psychotic symptoms—may provide the founda-
tion for a more parsimonious theory of schizophrenia compared to traditional multicausal
models. In several of the nonlinear cases we also observed the qualitative “fingerprint” of
deterministic chaos: a decay of deterministic features of the course of disorder with time.
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Introduction

In psychiatry, a profound interest in the processual char-
acter of schizophrenia (Ciompi 1989; Strauss et al 1985)
faces a neglect of quantitative longitudinal research. Thus,
in the face of dynamical theories of the subject matter,
empirical research is still tied to cross-sectional designs
and hypotheses. It appears that there is a definitive
incongruence of theory and methodology in this field in
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that the crucial importance of time is stressed in theory and
ignored in empirical studies. Hifner and Maurer (1991)
express this same opinion by stating that psychiatry is still
suffering from an “extreme shortcoming of longitudinal
research.”

In the last three decades the new interdisciplinary
research program of nonlinear dynamical systems theory
has gained much momentum as a unifying paradigm in the
natural sciences. In this context two focal concepts,
self-organization and chaotic dynamics, are prominent.
The former states that complex systems of any kind may
tend to produce order and pattern spontaneously if systems
are permeated by fluxes of matter, energy, or information
(Haken 1988; Nicolis and Prigogine 1977). Self-organized
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patterns typically evolve via instability points where a
system enters a new mode of behavior. Sudden phase
transitions (bifurcations) may thus be followed by phases
of stable dynamics (dynamical equilibria, attractors).
Equilibrium does not imply static equilibrium, or a steady
state (Abraham and Shaw 1992). The concept of chaotic
dynamics, for example, addresses a type of dynamical
equilibrium that has received much attention recently.
Chaos stands for a class of deterministic behaviors in a
system which, while fully determined and stable (ie.,
compressing phase space to a subset, the attractor), nev-
ertheless shows unpredictable courses within a short pe-
riod of time (Rossler 1976; Bergé et al 1984). Thus, chaos
is a strange phenomenon: it entails order and uncertainty at
the same time. The functionality of this Janus-faced
dynamics for cognitive information processing (providing
for continuity and creativity) has been stressed by several
authors (e.g., Nicolis 1986; Skarda and Freeman 1987).
Both concepts—self-organization and chaos—have in-
creasing impacts on psychology and psychiatry (Haken
and Stadler 1990; Tschacher 1990; Tschacher et al 1992).
Globus and Arpaia (1994) point out that the nonlinear
dynamical model leads to a topological representation of
disorders and has the potential to yield a new paradigm for
psychiatry (see also Mandell and Seltz 1992). The new
dynamical approach appears to be relevant to psychiatry in
several respects: (1) Brain function can be modeled
deductively by connectionist computer simulations; the
resulting neural nets have many of the attributes of
nonlinear dynamical systems. Compared to the symbol
processing approach of traditional artificial intelligence
(Al they promise to yield more appropriate models of the
actual neuronal networks of the brain. (2) Brain dynamics
may be modeled in an inductive, data-driven way by
nonlinear time series analysis. Many studies have been
conducted by employing dimensionality measures of the
electroencephalogram (EEG) to estimate the chaoticity of
the electrical behavior of the cortex (e.g., Mayer-Kress and
Layne 1987). (3) The concept of dynamical diseases
(Glass and Mackey 1988; an der Heiden 1992) is based on
a system’s view of psyche, body, and social world. This
concept implies that behind symptoms we may find the
processing of a dynamical system. Then, disorder is
equivalent to a significant change of a system’s dynamical
regime such that pathological behavior evolves out of
healthy behavior by way of a bifurcation (a phase transi-
tion between two different dynamical regimes). In psychi-
atry, mainly bipolar depression and schizophrenia have
been viewed from this angle (Gjessing 1932; Gottschalk et
al 1995). (4) Techniques of nonlinear time series analysis
are becoming available for the investigation of symptom-
atology ratings. There is a growing palette of methods

BIOL PSYCHIATRY 429
1997:41:428 - 437

suitable even for noisy data with restrictions due to time
series length and resolution (Scheier and Tschacher 1994).

In this paper we will address the last two points of this
list; our hypothesis concerning schizophrenia claims that
psychotic episodes may be understood as manifestations
of a nonlinear, possibly chaotic system, i.e., schizophrenic
psychoses are considered to be dynamical diseases
(Schmid 1991; Ciompi et al 1992). Furthermore, the
limitations of standard chaos detecting methods discussed
in Steitz et al (1992) caused us to adopt a new kind of
methodology capable of distinguishing nonlinearity from
noise and noisy linear processes.

Hypotheses

The system-under-study of this paper is the hypothetical
dynamical system that generates psychotic symptoms. In
formal notation, we assume to observe data of a stochastic
dynamical system. We put aside the possibility of a system
showing high levels of dynamical noise resulting in
non-stationary time series; non-stationarity would make
any modeling effort suspect.

The system may be symbolized by a differential equa-
tion with a stochastic term F(¢) describing external fluc-
tuations that act on the system:

x(1) = N(x{t) ) + F(2). (1)

x(f) is a vector of the state variables of the system
dependent of time ¢ (state variables are all m phenomeno-
logical descriptors of the system, thus spanning a phase
space of dimension m). N is the (linear or nonlinear)
function that determines the temporal change of state
variables. The function itself depends on the environment
of the system expressed by a set of control parameters ).

(1) lends itself to the following simple classification of

qualitatively distinct dynamical systems:

(a) F(5)=>N(x(t),)): If the noise or random term is
much larger than the deterministic part of the
equation, system (1) describes a more or less
stochastic process. This would mean that the
time series shows no evidence of a dynamical
disease.

(b) F(r)<<N(x(1),n): We get a deterministic system
capable of producing dynamical equilibria (“‘at-
tractors”). Point attractors and periodic attrac-
tors can be realized by systems with linear or
nonlinear N, while chaotic dynamical equilibria
are necessarily derived from nonlinear systems.

(©) o> (N(x(®),m))/c*(F(1)) = R: A combination of
the above cases is predominant in most empir-
ical time series reflecting noisy deterministic
systems with some signal-to-noise ratio R,
which is expressed using the variances 2 of the
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deterministic and stochastic terms of (1). Here a
further distinction can be made by using statis-
tical tests:

(c,) Nis nonlinear. If a positive Lyapunov expo-
nent exists, the system is chaotic (with some
degree of contamination with observational
noise).

(c;) Nis linear. The time series can be explained
as linearly correlated noise, and should
therefore be modeled by, e.g., an autoregres-
sive moving average process (ARMA).

We will classify empirical data on psychoses according
to this differentiation. The goal of our classification is to
disentangle the different dynamical sources of variation
(i.e., linear autoregressive (AR) or moving average (MA),
white or colored noise components) in our time series.
This classification must be seen as an effort to estimate
attributes of (1) on the basis of discrete data. Purely
stochastic systems (a) whose time series do not show serial
structure pose a first null hypothesis since environmental
influences on symptoms are not controlled for in our field
data (rigorous control is possible only under experimental
circumstances and as such is incompatible with the acqui-
sition of long and relevant time series). (a)-systems are
suggested by behavioral theories (operant and classical
conditioning) which view psychotic behavior as largely
under the control of external stimuli; the dynamics of an
(a)-system does not result from a system’s intrinsic prop-
erties: We would not speak of a dynamical disease in this
case at all.

Nonlinear and chaotic dynamics (c,) on the other hand
point to the existence of an internally controlled, possibly
low-dimensional system unfolding relatively autono-
mously from environmental fluctuations. Empirical evi-
dence of (c,)-systems (and obviously of (b)-systems, also)
would be a validation of the dynamical disease concept of
schizophrenia.

Methods
Subjects and Variables

We studied patients treated at “Soteria” in Bern, a thera-
peutic residential community specialized for persons ex-
periencing a first psychotic manifestation. The only pre-
requisite for inclusion in our sample was that a patient’s
daily manifestations of psychotic symptomatology could
be observed for a long enough period of time (at least 200
consecutive days). Thus because of methodological con-
straints our sample consists of 14 long-term Soteria
residents (10 diagnosed schizophrenic, two schizoaffec-
tive, one schizophreniform, one brief psychotic disorder).

The longitudinal course of symptoms was mapped by
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1: relaxed, well-balanced, calm
2: unsteady, anxious, nervous, irritated
3: restless, tense, loaded, aggressive
or
depressive, cross, down-hearted, sad
or
ambivalent, irresolute
4: intimidated, agitated, confused, labile, loose
associations
5: phenomena of derealization and/or
depersonalization: surroundings or oneself
appear unreal, strange, changed. Thought
disturbance: absentmindedness, pressure of
thought, breaks of thought
6: ideas of reference, delusional projections, delusions:
incorrigible convictions of oneself and the world contradict
reality and experiences of others
7: hallucinations: perceptual experience without objective source
of stimulation. Inexistent stimuli are heard, seen, felt, smelled.
Catatonic phenomena: motor blockage, compulsive posture,
stereotypy, mannerism, movement storm

Figure 1. Abbreviated manual for the daily rating scale (variable
measured: psychotic derealization in schizophrenia).

daily ratings of a patient’s psychoticity by Soteria staff
members. A seven-point scale was used (Figure 1; Aebi et
al 1993) by which the course of psychotic derealization
was measured. Reliability of ratings was established dur-
ing a period of six weeks of training, resulting in an
interrater agreement of .70 (Kendall’s tau).

The measurement process can be seen as the mapping of
a continuous variable “psychotic derealization” in schizo-
phrenia onto a set of seven equidistant categories of the
rating scale. In order to arrive at an appropriate formula-
tion of the state vector x(¢) after equation (1), the empirical
time series must be unfolded by the method of time delays
(Takens 1981). Thus we obtain an embedding in a space of
m dimensions where the course of the system is repre-
sented as a trajectory (a sequence of states). Actually, the
trajectories that result from our empirical time series are
approximations of the hypothesized continuous trajecto-
ries of the schizophrenic processes. Examples of time
series and trajectories of two patients are depicted in
Figure 2.

Additional to symptom ratings we recorded the dosages
of psychoactive drugs patients of our sample received. For
an overview of subjects see Table 1.

Time Series Analyses

The methodology of time series analysis has progressed
considerably during the last years; linear (ARMA) models
(Box and Jenkins 1976) which have been in use for several
decades are more and more accompanied by nonlinear
models (Tong 1990). This is essential for innovative
system theoretic approaches like self-organization theory
(synergetics) and chaos theory.
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psychoticity

psychoticity

Figure 2. Time series plots and phase plots of psychoticity ratings (left: patient 47; right: patient 57). The phase plots are embedded

in m=3 by the method of time delay vectors (1 = 10 days).

Our data sets are characterized by relatively short time
series lengths (200 < n < 770), few steps of the scales
(resolution of measurement <<3 bits), and varying degrees
of measurement noise and dynamical noise; taken alto-
gether, this is typical of psychosocial data acquisition.

One of the main points of this paper is that psychiatric
time series like the schizophrenia data presented here can
be analyzed with appropriate dynamical measures. Most
recent studies applying dynamical methods to psycholog-
ical and psychopathological time series (e.g., Ciompi et al
1992; Redington and Reidbord 1992; Gottschalk et al
1995) use the “classical” methods of nonlinear time series
analysis, namely calculations of fractal dimensions and
Lyapunov exponents. These methods, however, can not be
applied to short and noisy time series with low resolution
(Ruelle 1990; Steitz et al 1992; Rapp 1993; Scheier and

Tschacher 1994). Thus, they are not used in this study. We
concentrated on new methodological approaches which
have been shown to remain applicable when only short
and noisy time series are available. These approaches are
nonlinear forecasting algorithms combined with statistical
tests.

The rating scale used to assess psychoticity enforces a
discretization to seven categories as mentioned above.
Nevertheless, the measured variable—psychotic derealiza-
tion in schizophrenia—is assumed to be a continuum.
Thus, our data are not merely symbol strings of observed
symptoms. The theory of a continuum of progressive
derealization marked by a number of diverse symptoms is
detailed in Ciompi (1982) and elsewhere (Conrad 1958;
Scheflen 1981; cf, factor analytical views: Kay and Sevy
1990).
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Table 1. Description of Subjects Included in the Study
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Average
Age n neuroleptic Average Previous DSM-IV

Patient Sex (years) (days) dosage psychoticity ~ admissions code Diagnostic impression

53 m 24 212 158.6 243 None 295.3 Paranoid schizophrenia; persecutory delusions

56 m 18 503 91.3 3.28 None 295.3 Paranoid schizophrenia; religious delusions, voices,
echopraxia

47 f 20 572 502.3 5.37 None 295.1 Schizophrenia, disorganized type, anergia, irrelevant
affect

58 f 26 291 15.9 3.59 None 295.3 Paranoid schizophrenia; persecutory delusions

51 f 23 222 190.5 4.13 1 295.1 Schizophrenia, disorganized type; poor premorbid
adaptation

19 f 29 203 228 2.78 1 2954 Schizophreniform disorder

34 m 25 762 102.9 2.26 None 2951 Schizophrenia, disorganized type; suicide 1/90

48 f 37 207 112.7 1.82 Approx. 295.7 Schizoaftective disorder, depressive type

10

54 f 32 681 23.8 2.92 None 2052 Catatonic schizophrenia; mutism, mannerisms, voices

13 f 23 326 409.3 6.03 2953 Paranoid schizophrenia; voices, inappropriate affect

24 m 27 234 4.1 4.01 2953 Paranoid schizophrenia; delusions of persecution,
jealousy, voices

62 m 20 227 57.6 327 295.7 Schizoaffective disorder, bipolar; paranoid ideation

57 f 26 236 239.1 343 None 2953 Paranoid schizophrenia; somatic delusions, suicide
10/91

41 f 18 297 0 1.73 None 298.8 Brief reactive psychosis; after social stress, emotional
ambivalence

“n, number of daily symptom ratings; Average neuroleptic dosage, mg chlorpromacine equivalents: Average psychoticity, according to ratings; DSM-TV code, clinical

diagnostic impression.

Forecasting Algorithm 1

An essential property of a system is the way in which its
temporal evolution is determined. How may we classify
the rules that influence the system’s behavior? A direct
way to accomplish this would be a measure of the
determinism inherent in the system. One such measure of
determinism is the forecastability of a system, given time
series observations of its behavior (Sugihara and May
1990).

First, a time series is divided into two halves; the first
half is a “library” that can generate forecasts. In order to
do that, a system’s phase space of embedding dimension m
is reconstructed from the time series using the method of
Takens (1981). Each state of the system is represented by
one point in phase space. Forecasting temporal develop-
ment thus addresses the question of which point is next
approached by the system. On the grounds of axioms of
dynamical systems theory it must be assumed that neigh-
bors in phase space change in a similar way if the
underlying system is deterministic.

In this way we can forecast the future development of
any given state documented in our patients. The accuracy
of forecasting can be defined as the correlation of expected
development (extrapolated on the basis of next neighbors
in the “library” data) with actual development (as realized
in the second half of the time series). Figure 3 charts such
correlations derived via a non-parametric version of the

Sugihara-May algorithm from the data sets of Figure 2 and
the other patients. As can be seen in patient 47, the
correlation value for time step 1 (“next day”) is approxi-
mately 0.7. A forecasting period of 4 days, however, no
longer yields a valid prognosis (the correlation has de-
creased to below 0.1 at an embedding dimension of m =
3).

The change of forecasting accuracy for increasing
periods of time is characteristic for the kind of time series
that has been mapped—we achieve a “fingerprint” of the
system’s dynamics. A linear autoregressive system, for
instance, yields no decrease of correlations, but a constant
positive value of forecasting accuracy; a random generator
in a computer (or a noisy system, respectively) shows no
correlations deviating significantly from zero; a chaotic
system acts according to sensitive dependence on initial
conditions (the definition of chaos) by giving a trajectory
of prognoses that resembles patient 47: short-term predict-
ability with non-predictability in the longer run is a basic
sign of deterministic chaos.

SURROGATE DATA METHOD. One possible way to clas-
sify a system would be to describe the system’s “finger-
prints” by visual inspection. But superposition of different
source processes may lead to erroneous classification. We
therefore chose a more systematic statistical procedure
which estimates if there is a significant difference of the
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Figure 3. Courses of forecasting accuracies computed with the Sugihara-May algorithm for the patients. In each course the optimal
embedding dimension m is chosen. The top chart shows patients with courses classified as nonlinear. The bottom chart shows patients

with courses classified as linear or noisy.

index system’s determinism and the determinism of arche-
typal artificial systems, so-called surrogates.

We used this method of surrogate data to evaluate the
statistical significance of our time series classification via
forecasting accuracies. The method is described at length
in Theiler et al (1992) and Scheier and Tschacher (1994):
first we compute a discriminating statistic with the above
forecasting method (we exploited the forecasting accuracy
for the period “one day” as a marker of determinism; e.g.,
r = 0.70 for patient 47 in Figure 3). Then we determine
the respective values for a number of surrogate data (i.e.,
artificially generated “time series,” that are identical with
the measured data according to mean, variance, and

length, but represent other types of serial determinism). In
this way we gain a distribution of discriminating statistics
so that we can test if the empirical time series can be
discriminated from a population of surrogate data as far as
determinism is concerned.

Tests were employed in two ways: first, we tested if
empirical time series can be predicted better than random;
second, we fitted linear autoregressive models to the
original data, used the various realizations of these models
as surrogate data sets, and examined if empirical data can
still be forecast better than their linear models. Thus, this
surrogate data method allows us to test two null hypoth-
eses: null hypothesis (1): The time series behaves like a
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string of random numbers, i.c., is an (a)-system according
to the classification given above. null hypothesis (2): The
time series examined behaves like a linear autoregressive
process—a (c,)-system.

The rejection of both null hypotheses indicates that a
certain time series contains nonrandom serial structure and
is not linear-autoregressive.

Forecasting Algorithm 2

This second forecasting algorithm is similar to the Sugi-
hara-May algorithm. It was designed to allow for a
distinction of noise vs chaos (NVC). For each m-dimen-
sional state vector of a time series one single closest
neighbor in phase space is determined. In order to control
for spurious correlations, neighbors in temporal vicinity of
the to-be-predicted state are excluded from computation.
In cases where there is still more than one equidistant
neighbor, the computer routine uses the first nearest
neighbor found. The evolution of this neighbor serves as a
predictor. Application to every state vector of the data set
yields a distribution of prediction errors (Kennel and
Isabelle 1992).

SURROGATE DATA METHOD (NVC). Kennel and Isa-
belle suggest using surrogate data sets which have the
same length, mean, variance, and power spectrum as the
original time series. These surrogates test for “linearly
correlated noise” as detailed in Theiler et al (1992).

Surrogates are generated by randomizing the phase of
the discrete Fourier transform of the original data. Then
the distribution of prediction errors of the original data is
compared to the distributions of surrogate prediction
errors by a nonparametric test (Mann-Whitney U). For
large enough numbers of prediction values, a standard
normal distributed z-statistic is obtained (see Table 2). In
short, we introduce another null hypothesis: null hypoth-
esis (3): The time series behaves like a string of random
numbers with a power spectrum identical to the original
data (“linearly correlated noise”).

In several computer experiments we could confirm the
ability of the two forecasting methods to distinguish
random (a)-systems, linear stochastic (c,)-systems and
nonlinear deterministic (c,;)-systems reliably (Scheier and
Tschacher 1994). We found that discrimination is main-
tained under conditions of noise (up to 70%) and short
time series (in some cases with less than 200 points of
measurement). Computer experiments also show that this
method is robust when a continuous variable is discretized
so that data resolution is artificially reduced to a few
categories (Scheier and Tschacher 1995). We found con-
sistently that lowered data quality leads to more conser-
vative estimations, which helps avoid false positive re-
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Table 2. Results of Nonlinear Forecasting and Related
Significance Tests”

Forecasting Linearity
Patient  accuracy  Noise test test NVC Model
53 0.757 4.59** 3.42%% —5.12*%*  Nonlinear
56 0.578 9.26** 6.66** —8.32*%*  Nonlinear
47 0.698 15.27** 2.18%* —12.55**  Nonlinear
58 0.358 2.72%% 8.16%* —7.12*%*  Nonlinear
51 0.92 11.28%* 1.9 —2.9%*  Nonlinear
19 0.671 5.13** 2.33* —3.45*%*  Nonlinear
34 0.479 11.64** 2.28* —1.88 Nonlinear
48 0.472 4.70%* 2.18* —3.16** Nonlinear
54 0.696 17.13** 1.23 047 AR
13 0.661 10.84%* 1.72 0.66 AR
24 0.852 11.97** 0.87 1.09 AR
62 0.79 12.22%* 0.98 —0.23 AR
57 0.174 0.8 (5.26%*) 0.77 Noise
41 0.477 1.66 (4.91%*) 2.33*  Noise

“Forecasting accuracy, the degree of predictability of a time series (maximum
correlation between forecast one day ahead and actual data after Sugihara and
May); Noise test, noise effect measure from test of the first null hypothesis;
Linearity test, linearity effect measure for the second null hypothesis; NVC, noise
vs chaos effect measure for third null hypothesis (eftect measures are values under
a standard normal distribution; e.g., 1.96 [*] is significant at a 5% error level [both
sides], 2.58 at the 1% level [**]); Model, classification according to coefficients
[Noise: (a)-systems; AR: (c,)-systems; Nonlinear: (c,)-systems.

sults. In short, we simulated the application of rating
scales like the ones we used for the observation of
psychotic derealization in schizophrenic subjects.

Rejection of null hypotheses (1)—(3) suggests that the
time series tested is neither noise, a linear-autoregressive
process, nor colored noise (e.g., a general ARMA pro-
cess). Thus, we may follow by exclusion that the time
series has significant nonlinear components.

Results

Qualitatively different groups of psychotic courses can be
distinguished by visual inspection of the 14 data sets as
assessed by the Sugihara-May algorithm (Figure 3). The
first group of courses yields forecasting curves that resem-
ble those of chaotic-deterministic systems (denoted as
“nonlinear” in the legend of Figure 3). As in the original
publication of Sugihara and May (1990) we found varying
degrees of noise in our nonlinear time series that reduce
one-day forecasts to values of between 0.92 and 0.4. These
time series are probably (c,)-systems. Further time series
can be characterized as random data sets ((a)-systems,
“noise” in Figure 3) or autoregressive processes ((c,)-
systems, AR). This last group of psychoses shows less
change in forecasting accuracy over time.

The impression obtained by visual inspection of fore-
casts is supplemented by the significance tests on the null
hypotheses of the surrogate data methods. In Table 2 we
list the forecasting accuracies after Sugihara and May and
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the effect measures for null hypotheses (1) and (2). Tests
of null hypothesis (3) derived from the NVC method
support these findings. Table 2 shows that eight out of 14
patients (57%) present nonlinear dynamics. Four time
series are best modeled as (AR and/or MA) linear pro-
cesses. Two cases are classified as random. In cases that
seem unclear after visual inspection (e.g., is the fingerprint
of pt. 13 nonlinear?), we classify according to the statis-
tics. To quote another example: Pt. 41 shows some
forecastability one day ahead, but is diagnosed as colored
noise by the NVC. This course could be modeled by a
moving average process, and is therefore not counted as
nonlinear. The results of significance tests are summarized
under the heading “model” in Table 2.

Neuroleptic medication is one of the most influential
parameters in psychopathological courses of treated pa-
tients. For this reason we tested whether there was any
indication of an influence of drugs on the classification
given in Table 2. We computed the average daily neuro-
leptic dosage (mg chlorpromacine equivalents) for each
patient that is positively correlated (r = 0.69) to the level
of psychoticity (see Table 1). There is no significant
correlation of dosage (nor of average psychoticity) with a
“nonlinear vs other” subgrouping of patients.

Discussion

Our goal is to contribute to a dynamical systems approach
in psychiatry and clinical psychology. With Strauss et al
(1985) we hope that “. . .the issues of sequence and
patterns cannot be neglected indefinitely: they potentially
hold answers for too many crucial questions.” Further-
more, we are convinced that the concepts of self-organi-
zation, chaos and complex dynamics have great explana-
tory power for psychopathology and schizophrenia
research. But as empirical scientists we also think that the
years of systems theoretical conceptualizations (for an
overview see Tschacher et al 1992) should finally be
accompanied by longitudinal empirical studies. Even if
“dynamics is the essence of psychiatry” (Freeman 1992)
there will be no dynamical systems paradigm in this field
without much more empirical work.

In the field of nonlinear dynamics we encounter grow-
ing skepticism about the method of dimension analysis as
a tool to detect chaos in empirical data (Ruelle 1990).
Even many of the EEG findings reported in recent years
are probably based on spurious effects (Rapp 1993). So to
us it seems all the more clear that correlation dimension is
not an adequate parameter for the description of psycho-
pathology ratings and psychological data. We therefore
investigated and tested alternative methods of data reduc-
tion—forecasting algorithms combined with surrogate
data statistics—which are more appropriate tools for
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modeling nonlinearity in noisy empirical data. A further
advantage of this statistical “bootstrap approach” is that
more and more specific null hypotheses can be generated
(e.g., the static nonlinear filter surrogates mentioned in
Theiler et al [1992]). Furthermore, various discriminating
statistics may be defined that map other attributes or
invariants of time series, e€.g., Lyapunov exponents or
measures of entropy (Wales 1991; in the context of
psychotherapy research (Tschacher and Scheier 1995), we
implemented surrogate tests using algorithmic complexity
(Rapp et al 1991).

The application of surrogate methods to psychoticity
time series of 14 psychiatric patients is reported here. We
found evidence to the point that a larger proportion of the
psychoses we studied shows nonlinear time courses. This
supports the validity of the concept of dynamical diseases
on statistical grounds in this important area of psychopa-
thology (for earlier work in this field see Gjessing 1932;
Cronin 1973). Additionally, our investigations are com-
patible with the hypothesis that schizophrenia may be
characterized by chaotic evolutions. Since direct proof of
deterministic chaos in relatively short empirical time
series is unattainable (Scheier and Tschacher 1995) we can
not assess the chaoticity of the schizophrenia courses we
studied. Yet, visual inspection of forecasting accuracies
(Figure 3) shows that the decay of predictability typical of
chaos (but also of some MA processes) is present in
several cases. In most of these cases, though, alternative
hypotheses (especially, linearly correlated stochasticity of
ARMA processes) can be rejected.

Which conclusions can be drawn from these results?
The finding that in schizophrenia symptoms are generated
by a nonlinear dynamical system is good reason to assume
that a precise understanding of the disorder is possible. We
think it is probable that few variables coupled nonlinearly
can sufficiently explain the unfolding of symptoms in
many cases. The solution to the problem of schizophrenia
may not lie in adding still more causal factors to an
additive multicausal theory of this disease. An adequate
nonlinear theory will be more parsimonious.

Quite obviously, we do not yet have this theory at our
disposal; we know little of the character of the nonlinearly
coupled variables mentioned. They may be biological,
psychological, or social (or some blend of the three
phenomenological domains). Until now, we found no
phenomenological parameters that could link nonlinear
dynamical models to other descriptors (such as severity of
symptoms, outcome variables, medication). For example,
we found no simple relation between average doses of
neuroleptics used by patients and their dynamical classi-
fications. There probably is no general theory of schizo-
phrenia even in similar cases but rather individual instan-
tiations of a dynamical disease. Schizophrenia may be a
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wide class of (c)-systems with idiosyncratic parameters in
each instance.

Several dynamical views of psychiatric disorders have
been put forward recently. Globus and Arpaia (1994) assume
that there is a splitting of the brain’s tuning (i.e., in technical
terms, a change of control parameters causing phase transi-
tions in a self-organizing system). Malattunement may thus
distort the topology of the cognitive system. Hoffman and
McGlashan (1993) propose that parasitic foci emerge in
neuronal networks and produce the positive symptoms of
schizophrenia. Our view on psychosis takes another direction
which is due to the different data levels used (neural net
modeling vs empirical psychopathological data): we try to
reconstruct the schizophrenia attractor from phenomenolog-
ical observations.

Our findings also complement evidence of an increase
of dimensional complexity in the EEG of schizophrenic
persons (Koukkou et al 1993). Results appear to be
antagonistic (few degrees of freedom in schizophrenia
courses on one side, increase of degrees of freedom in the
EEG on the other); but the increased number of neuronal
cell assemblies activated in schizophrenics may reflect the
cognitive and emotional impairment, which in turn leads
to the phenomenological derealization dynamics discussed
in our study. The neurophysiological and the longitudinal
clinical picture can be seen as two different views of the
same dynamical disease.

From the phenomenological point of view, normal
functioning is realized by a stable fixed point (a point
attractor). The fixed point damps out any psychotic fluc-
tuation (caused by, say, sensory deprivation) within a short
time and restores the system to nonpsychotic regions in
phase space. In order to become schizophrenic an individ-
ual must cross one or more critical points in parameter
space; at these points once stable variables become en-
dowed with positive eigenvalues and tend to emerge as the
new organizing forces in the system. If three or more
competing unstable variables simultaneously emerge they
may cause the system to show chaotic dynamics (Haken
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